Sixth International Baltic Conference on Data Bases and Information Systems

"Using Association Rules to Extract Regularities from Data"

Pēteris Grabusts
Riga Technical University

June 6-9, 2004

Outline

\square Overview of data mining association rules
\square Algorithm Apriori

- Experiment

Introduction

\square Data Mining

\square Involves analyzing data in order to identify patterns and establish relationships or regularities
\square Also known as "knowledge discovery"
\square Association Rules
\square Defines a pattern where one event is linked to another event
\square Mining association rules can be a complex, time-consuming task

Data Mining Association Rules

\square Motivated by decision support problem

- Large retail organizations collect sales data from every sales transaction (known as "basket data"
- Each record consists of a transaction date and the store items bought in that transaction
- Basket data can be analyzed to establish patterns such as bying trends
\square Databases that store basket data are quite large, so we need "fast" algorithm to mine association rules

Association analysis

Association Analysis -- discovery of association relationships between attribute-value conditions.

Such relationships may be expressed in many ways. On common way is through association rules.

$$
X=>Y \quad A 1^{\wedge} \ldots^{\wedge} A m \Rightarrow B 1^{\wedge} \ldots .^{\wedge} B_{n}
$$

Association Rules

\square Describe relationships or regularities between events/items/attributes
\square Form: Body => Head [support, confidence]

- Example 1. Milk => Bread [8\%, 70\%]
- The 8% support indicates that 8% of transactions in the database contained both milk and bread as purchased items
- The 70% confidence means that 70% of the time, if a customer buys milk, they will also buy bread

Association Rules (cont.)

Example 2:
age (X, "20 .. 29") ^ income (X, "50Ls..150Ls") => buys (X, "CD player")
[support $=50 \%$ confidence $=60 \%$
]
\% of data instances satisfying all three components of rule
\% of data instances where hypothesis is satisfied and conclusion is predicted correctly

Formal Definition of Problem

\square Formal statement of the problem [AIS93]:

- Let $I=\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ be a set of literals, called items. Let D be a set of transactions, where each transaction T is a set of items such that $T \subseteq I$.
- A transaction T contains X, a set of some items in I, if $X \subseteq T$.
- An association rule is an implication of the form $X \Rightarrow$ Y, where $X \subset I, Y \subset I$, and $X \cap Y=\varnothing$.
- $X \Rightarrow Y$ holds in the transaction set D with confidence c if $\mathrm{c} \%$ of transactions in D that contain X also contain Y.
- $X \Rightarrow Y$ has support s in the transaction set D if $\mathrm{s} \%$ of transactions in D contain $X \cup Y$.

Formal Definition of Problem (cont)

Given a set of transactions D, the problem of mining association rules is to generate all association rules that have support and confidence greater than the user-defined minimum support (minsup) and minimum confidence (minconf).

Discovering Association Rules

Two major steps:
\square First, find all large itemsets, which are sets of items that have transaction support greater than minsup.
\square Then, use the large itemsets to generate the desired rules which have a computed confidence greater than minconf.

Example: $A B C D$ and $A B$ are the large itemsets
\square To determine if rule $A B=>C D$ is valid, compute the ratio conf=support(ABCD) / support(AB)
\square If conf $>=$ minconf, then the rule holds

Example of Confidence and Support

Computed based on number of transactions in D that include the itemset

TID	Items
100	$\mathrm{M}, \mathrm{N}, \mathrm{O}$
105	M, O
102	M, P
212	$\mathrm{~N}, \mathrm{O}, \mathrm{P}$

$$
\begin{aligned}
& \text { Support }(\{M, O\})=2 / 4=50 \% \\
& \text { Support }(\{M\})=3 / 4=75 \% \\
& \text { Support }(\{N\})=2 / 4=75 \% \\
& \text { Support }(\{O\})=3 / 4=75 \% \\
& \text { Suppport }(\{P\})=2 / 4=50 \%
\end{aligned}
$$

Confidence of Rule $M \Rightarrow O=$ Support $(\{M, O\}) /$ Support $(\{M\})=$ $0.50 / 0.75=2 / 3=66.6 \%$

Result: $\mathrm{M} \Rightarrow \mathrm{O}[50 \%, 66.6 \%]$

Problem Decomposition

\square Find all sets of items (itemsets) that have transaction support above minimum support. The support for an itemset is the number of transactions that contain the itemset. Itemsets with minimum support are called large itemsets, and all others small itemsets.
\square Use large itemsets to generate the desired rules. If $A B C D$ and $A B$ are large itemsets, then we can determine if rule $A B \Rightarrow C D$ holds by computing the ratio conf $=\operatorname{support}(A B C D) /$ support $(A B)$. If conf \geq minconf, then the rule holds. (The rule will surely have minimum support because $A B C D$ is large.)

Problem Decomposition (cont.)

Discoverying Large Itemsets

\square Algorithms for discovering large itemsets make multiple passes over the data
\square In the first pass, we count the support of individual items and determine which of them are large (with minimum support)
\square In each subsequent pass, we start with a seed set of itemsets found to be large in the previous pass, then use this seed set for generating new potentially large itemsets, called candidate itemsets, and count the actual support for these candidate itemsets during the pass over the data
$\square \quad$ At the end of the pass, we determine which of the candidate itemsets are actually large, and they become the seed for the next pass.
$\square \quad$ This process continues until no new large itemsets are found

Notations

\square The number of items in an itemset is its size and call an itemset of size k a k-itemset
\square Items within an itemset are kept in lexicographic order

k-itemset	An itemset having k items.
L_{k}	Set of large k-itemsets (those with minimum support).
	Each member of this set has two fields: i) itemset and ii) support count.
\boldsymbol{C}_{k}	Set of candidate k-itemsets (potentially large itemsets). Each member of this set has two fields: i) itemset and ii) support count.

Algorithm Apriori (I step)

1) $L_{1}=\{$ large 1-itemsets $\} ;$
2) for ($\left.k=2 ; L_{k-1} \neq \varnothing ; k++\right)$ do begin
3) $\quad C_{k}=$ apriori-gen $\left(L_{k-1}\right)$; // New candidates
4) forall transactions $t \in D$ do begin
5) $\quad C_{t}=\operatorname{subset}\left(C_{k}, t\right)$; Candidates
contained in t
6) forall candidates $c \in C_{t}$ do
7) c.count++;
8) end
9) $L_{k}=\left\{c \in C_{k} \mid c . c o u n t \geq\right.$ minsup $\}$
10) end
11) Answer $=U_{k} L_{k i}$

Apriori Candidate Generation

The apriori-gen function takes as argument L_{k-1}, the set of all large (k -$1)$-itemsets. It returns a superset of the a set of all large k-itemsets.

Apriori Candidate Generation (cont.)

\square First, in the join step, we join L_{k-1} with L_{k-1} : insert into C_{k}
select p. item,p. item ${ }_{2}$, ..., p. item k - 1,
q.item ${ }_{k-1}$

```
from L Lk-1 p, Lk - 1 q
```

where p. item $_{1}=$ q. item m_{1}, \ldots, p. item $_{k-2}=$
q. item $_{k-2, p . \text { item }_{k-1}<\text { q.item }}^{k-1}$
\square Next, in the prune step, we delete all itemsets $c \in C_{k}$ such that some $(k-1)$-subset of c is not in L_{k-1} :

```
    forall itemsets c }\in\mp@subsup{C}{k}{}\mathrm{ do
        forall ( k - 1)-subsets s of c do
            if (s\not\in L L - 1 ) then delete c from C C ;
```


Apriori-gen Example

\square Let L_{3} be $\left.\left\{\begin{array}{llll}1 & 2 & 3\end{array}\right\},\left\{\begin{array}{lll}1 & 2 & 4\end{array}\right\},\left\{\begin{array}{lll}1 & 3 & 4\end{array}\right\},\left\{\begin{array}{llll}1 & 3 & 5\end{array}\right\},\left\{\begin{array}{llll}2 & 3 & 4\end{array}\right\}\right\}$
\square In the join step:

- $\left\{\begin{array}{ll}1 & 2\end{array} 3\right\}$ joins with $\left\{\begin{array}{llll}1 & 2 & 4\end{array}\right\}$ to produce $\left\{\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right\}$
- $\{134\}$ joins with $\left\{\begin{array}{lll}1 & 3 & 5\end{array}\right\}$ to produce $\left\{\begin{array}{lll}1 & 3 & 5\end{array}\right\}$
- After the join step, C_{4} will be $\left.\left\{\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right\},\{1345\}\right\}$
\square In the prune step:
- \{1 2334$\}$ is tested for existence of 3 -item subsets within L_{3}, thus for $\left\{\begin{array}{lll}1 & 3\end{array}\right\},\{134\}$, and $\{234\}$
- $\{1345\}$ is tested for $\{134\},\{145\}$, and $\{34$ 5\}, with $\{145\}$ not found, and thus this set is deleted
\square We then will be left with only $\left\{\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right\}$ in C_{4}

Generating Association Rules (II step)

\square The second major step in mining association rules
\square After finding large itemsets using previous algorithm, we can generate association rules
\square For every non-empty subset a of a large itemset I, we output a rule of the form $a \Rightarrow$ (I $-a)$ if the ratio of support(I) to support(a) is at least minconf
\square Consider all subsets of I to generate rules with multiple consequents

Simple Algorithm

\square We can improve the proceeding procedure by generating the subsets of large itemset
\square For example, given an itemset $A B C D$, we first consider the subset $A B C$, then $A B$, etc
\square Then if a subset a of a large itemset I does not generate a rule, the subsets of a need not to be considered for generating rules using I
\square For example, if $A B C \Rightarrow D$ does not have enough confidence, we need not check whether $A B \Rightarrow$ CD holds

Simple Algorithm code

1) forall large itemsets $l_{k}, k \geq 2$ do
2) call genrules $\left(I_{k}, I_{k}\right)$
$\square \quad$ Procedure genrules $\left(l_{k}\right.$: large k-itemsets, a_{m} : large mitemsets)
3) $\quad A=\left\{(m-1)\right.$-itemsets $\left.a_{m-1} \mid a_{m-1} \subset a_{m}\right\}$;
4) forall $a_{m-1} \in A$ do again
5) $\operatorname{conf}=\operatorname{support}\left(I_{k}\right) /$ support $\left(a_{m-1}\right)$
6) if (conf \geq minconf) then begin output the rule $a_{m-1} \Rightarrow\left(l_{k}-a_{m-1}\right)$, with confidence $=$ conf and support $=\operatorname{support}\left(I_{k}\right)$ if ($m-1>1$) then
call genrules ($I_{k}, a_{\mathrm{m}-1}$);
// to generate rules with subsets of a_{m-1}
as the antecedents
7)

as the antecedents
11) end
12) end

Rule discovery example

- Large itemset: ABCDE
- Assume $A C D E=>B$ and $A B C E=>D$ are only one-item consequent rules with minimum confidence
\square Simple algorithm:
Recursive call to genrules(ABCDE,ACDE) with test if the two-item consequent rules $A C D=>B E, A D E=>B C$, $C D E=>B A$ and $A C E=>B D$ hold
(First of the rules cannot hold since $E \subset B E$ and $A B C D$ $=>E$ not have minconf. Second and third rules fail due to similar reasons)

Experimental part

\square Main motivation -desire to find regularities in raw data
\square Data

- From Latvian Central Statistics Office
- Inhabitant migration process
- Questionary - 3044 respondents

ㅁ Environment - Matlab

Questionary

The respondents were asked the following questions:

1. In which country were you born? (with 11 possible reply options offered);
2. How long have you lived in this place? (with 4 reply options offered);
3. Where did you live before removing to this place? (with 3 reply options provided);
4. Please designate the type of the place you lived in before removing to the current place? (with 7 possible reply variants);
5. What was the reason for you to move to the current place? (with 6 possible replies);
6. Are you planning to move to another place within the next 3 years? (with 5 possible reply options provided).

Data

a) SPSS format
b) converted

2	2	\cdot	\cdot	\cdot	3
2	2	\cdot	\cdot	.	3
4	\cdot	2	2	4	3
5	.	2	5	5	3
2	2	1	3	3	3
4	.	2	5	4	2
2	1	.	.	.	9
2	2	1	5	3	3
2	2	1	3	3	3

| 12 | 45 | | | | 83 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 12 | 46 | | | | 83 |
| 14 | 45 | 52 | 62 | 74 | 83 |
| 15 | 46 | 52 | 65 | 75 | 83 |
| 12 | 45 | 51 | 63 | 73 | 83 |
| 14 | 45 | 52 | 65 | 74 | 82 |
| 12 | 45 | | | | 88 |
| 12 | 43 | 51 | 65 | 73 | 83 |
| 12 | 45 | 51 | 63 | 73 | 83 |

Experiment I

Minconf=95 \& minsup=95
(58 rules were derived)

12	45				83
12	46				83
14	45	52	62	74	83
15	46	52	65	75	83
12	45	51	63	73	83
14	45	52	65	74	82
12	45				88
12	43	51	65	73	83
12	45	51	63	73	83

$$
\begin{aligned}
& 12 \quad 74=51 \\
& 46=58 \\
& 12 \quad 74 \quad 83=551 \\
& 12 \quad 46=>83 \\
& 45 \quad 51 \quad 65=883
\end{aligned}
$$

Experiment I (cont.)

Taking into account the decoding results one can conclude that:
\square the 1st rule determines: IF "you were born in Latvia" AND "moved to the current place due to family reasons" THEN "Before moving to the current place you were living in Latvia".
\square the 2nd rule determines: IF "You have always lived in this place" THEN "In the next 3 years you are not planning to move to any other place".
\square the 3rd rule determines: IF "You were born in Latvia" AND "You have moved to this place due to family reasons" AND "You are not planning to move to any other place within the next 3 years" THEN "Before moving to the current place you lived in Latvia"

Experiment I (cont.)

Determine the dependence of the count of regularities on the preliminarily assigned boundary values of Support and Confidence:

Dependence of rule count on support values

Dependence of rule count on confidence values

Experiment II

\square Rule count's dependence on support values:

Support	10	15	20	25	50	75	100
Conf. -50	2690	2071	1628	1346	765	509	386
Conf.-75	1717	1343	1029	839	473	318	241
Conf. -90	983	736	553	436	246	159	121

\square Graph of rule count's dependence on support values:

Conclusions

\square Software implementation of association rules requires considerable time
\square The analysed data should be possibly homogeneous
\square Unfortunately, erroneous or strange data also participate in rule formation

Conclusions (cont.)

\square Association rules describe relationships or regularities between items/events/attributes
\square Mining association rules can be valuable for a variety of applications including marketing
\square Two major steps:

- Discover large(frequent) itemsets that have minimum support:
\square Apriori, AprioriTID
\square Soft Apriori (alternative to Apriori)
\square FP-trees (alternative to Apriori)
- Generate association rules that have minimum confidence
- Simple \& Faster algorithms discussed with Apriori
\square Research has continued to focus on improving the algorithms used to mine association rules

References

ㅁ R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items in Large Databases. In Proceedings of the 1993 International Conference on Management of Data (SIGMOD 93), pages 207-216, May 1993
\square R. Agrawal, R. Srikant. Fast Algorithms for Mining Association Rules (1994) Proc. 20th Int. Conf. Very Large Data Bases, VLDB
\square Jiawei Han, Jian Pei, Yiwen Yin. Mining Frequent Patterns without Candidate Generation. SIGMOD Conference 2000: 1-12

Thanks!

