SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series - Computer Science. Boundary Field Problems and Computer Simulation. - 42™ thematic issue:
ISBN
2000

Solving the Travelling Salesman Problem by classical simulated annealing
method

P. S. Grabusts
Riga Technical University, Riga, Latvia

Keywords: Optimization, Travelling Salesman Problem, Simulated Annealing

ABSTRACT: This study describes an optimization method called Simulated Annealing (SA) whose algo-
rithm is employed in artificial neural networks, particularly, in the Boltzmann machine. The SA method is
widely used in various combinatorial optimization tasks. In this paper the application of the SA method to a
well-known task of combinatorial analysis - Travelling Salesman Problem (TSP) - is demonstrated and an
experiment aimed to find the shortest tour distances between 25 Latvian towns is performed.

1 INTRODUCTION

Simulated Annealing (SA) is a stochastic optimization method that can be used to minimize the specified
cost function (energy) given a combinatorial system with multiple degrees of freedom. This method enables
one to find a global extremum for a function that has local minimums. The foundations of SA were intro-
duced in (Kirkpatrick et al. 1983) and then developed in (Laarhoven et al. 1987). Nowadays the SA method
is viewed of as an independent research area and is distinguished from artificial neural network techniques. It
is possible to incorporate SA properties into the neural network architecture in a variety of ways particularly
by including SA in the stage of learning. The prototype used was the Boltzmann machine to train which the
SA method was employed.

2 PHYSICAL ANALOGY

2.1 Annealing process

This is the analogy with statistical mechanics and, specifically, with elements of solid-state physics that un-
derlies the SA method. A practical example from metallurgy can be given here. What happens with the
atomic structure of a solid when it is being annealed very quickly, i.e. when the temperature is decreasing? A
sharp temperature falling can lead to the system's asymmetric structure or, in other words, to a non-optimal
state containing errors. In the long run annealing leads to a state when a system becomes chilled or frozen
and the thermal equilibrium is established.

The so-called Metropolises procedure determines iterative steps that control arriving at the best solution.
This algorithm is employed to simulate reaching the atomic equilibrium at the given temperature. At each
step of the algorithm atom is set with a slight probabilistic displacement (deviation): x; +£, and a variation of
system energy, AE, is calculated.

- If AE £0, then displacement is accepted and a configuration with the atom states changed is employed
as the initial state at the next step;
- If AE>0, then a probability that the new state is accepted will be

P(AE) = exp(-AE/kT) (1

where k = Boltzmann's constant; T= parameter: temperature.

Provided the system energy is employed as a cost function and system states are defined as {x;}, one can
see that the Metropolises procedure generates a variety of states for the given optimization task at the spe-
cific temperature.
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2.2 Combinatorial optimization

Methods that are commonly employed to solve combinatorial optimization problems are distinguished into
two deterministic and stochastic. Deterministic methods require not only huge computational resources but
they also do not ensure finding the global minimum of a sufficient accuracy. Stochastic methods, in their
turn, use statistical data with stochastic parameters, what affects the process of optimization, and solve the
task from the probabilistic point of view.

Stochastic methods can be characterized by two phases:

- general phase where the function objective is evaluated as a set of model points, and

- local phase when this set is reconstructed in the direction of local searching.

It should be noted that in many methods these two stages are not strictly distinguished.

Another way to understand SA as a combinatorial optimization method is to imagine energetic surface as
shown in Figure 1. When starting from a point optionally chosen, a pellet will always look for a path down.
If a system of this kind is destroyed - say, as a result of some impact - then the pellet in most cases moves
from A to B as the energy barrier from the side of A is less. If this impact is small, the pellet will more fre-
quently move from A to B not from B to A. When the impact is strong, the pellet is expected to overcome
the barrier quicker and more frequently, i.e. it may move both from A to B and from B to A. If one still
wishes to impact the pellet movement, then a good compromise variant could be to start with the strongest
impact and then to lessen it in sequence thus ensuring that the pellet could pass through the global minimum
at some step.

Figure 1. A simple energy landscape (G- global, L- local).

To enable practical application of the SA method, it is necessary to specify the following parameters:
Cost function W - analogous to the energy surface - the minimization of which is the purpose of the
procedure.

A set of possible solutions conforming the energy surface or the state of physical system.

Generator of configuration state random changes.

Control parameter T that characterizes the artificial system temperature, and annealing schedule that
characterizes in which way the temperature is decreased.

e\

In a general form (Laarhoven et al. 1987), the combinatorial optimization problem can be formalized as
(R,W) where R = space of states and W = cost function, W: R—R. The task now is to find a state at which W
assumes its minimal value, that is state i meets the following condition:

Wop =W(io)=minW(i) )

where W, = optimal (minimal) value. Then the Metropolises algorithm can be used to generate a variety of
states, W(i), and among those there can be W(iy).
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3 THE SA ALGORITHM

The SA algorithm is based on the Boltzmann probabilistic distribution:
Pr(E)~ eF/HD (3)

Expression (3) determines that if the system is in the state of thermal equilibrium at temperature T, its en-
ergy probabilistically distributes over all different energy states E. Even at a low temperature there exists a
possibility for a system of being in high energy state. The system has the corresponding probability to pass
from the local energy minimum state to a better, more global minimum.

The SA algorithm can be written as follows:

T=To;,
Whﬂe(T>Tfreeze)

Do until(Thermal Equilibrium is reached){
choice (Config. i -> Config. j);
lf(AWU<0) then

accept changes(Config. j);

else

r=random number[0,1);

if (exp(-AW;/T)>r) then
accept changes(Config. j);
else

ignore changes(Config. i);}
T=T*Tg}
where

Ty = initial temperature;

W; = current configuration;

W; = choice configuration;

T¢ = temperature variation coefficient;

exp(-AW;;/T) = Boltzmann's factor.

To understand the essence of SA, the following analogy can be suggested. Assume a space of state is set
as a basket of apples each state being represented as an apple. At each step one apple is drawn out and
weighted. How to find the biggest apple? In the deterministic (full) searching an apple is drawn out of the
basket, is weighted and is not put to the basket back. The best apple is kept aside. In the SA method, an apple
is weighted and put back to the basket. Hence it can be drawn out and weighted several times.

The SA technique differs from other gradient descent optimization methods in that it does not “stick” in
the local minimum found. Although SA is a rather slow procedure, it, however, ensures finding the global
optimal solution.

The SA method is widely used in various combinatorial optimization tasks. It is employed in graph theory
(to split and to paint graphs), in integrated circuit modeling (Laarhoven et al. 1987), neural net applications
(Coughlin & Baran 1995) etc. In what follows a well-known combinatorial analysis task - the Travelling
Salesman Problem (TSP) - is suggested as an application of the SA method.

4 THE TRAVELLING SALESMAN PROBLEM

The task of a travelling salesman is to find the smallest tour length between N cities provided he visits each
only once and returns to the starting point at the end of the trip. This task can be solved by using different
techniques of combinatorial analysis and graph theory. Solving the TSP by the SA algorithm is described by
Laarhoven et al. (1987) and Coughlin & Baran (1995).

In the n-city TSP, a distance matrix D=(dy), ij=1,2...... n is given; dj denotes the distance between
cities iand j. A tour through the n cities is defined as a closed walk that visits each city exactly once. Each
tour can be represented by an element 7 of the set of all cyclic permutations of the n cities {1,...,n}, if 7w is de-
fined such that w(i), i=1,...,n is the successor of city i in the tour. Thus, the set of configurations consists of
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all cyclic permutations of {1,.....,n} (there are %2 (n-1)! such permutations for a TSP with a symmetric dis-
tance matrix) and the cost of a permutation is defined as the length of the corresponding tour:

Cm=Y d )
i=1

The TSP now is to minimize the cost over all possible permutations. Consider the class of problem in-
stances, where the n cities are points in two-dimensional Euclidean space, whose locations are drawn inde-
pendently from the uniform distribution over the unit square, and let d;; be defined as the Euclidean distance
between the locations of i and j. Then Copt(D) is the smallest tour length in an instance of this class with dis-
tance matrix D.

Laarhoven et al. (1987) suggest a number of numerical expressions to evaluate the tours:

: C(D)
lim  C,, _o )

n—o n

where 0=0.7949.

In order to be able to apply the SA algorithm, a neighborhood structure must be defined, i.e. for each tour
one has to define a neighborhood as the set of tours that can be reached from the present tour in one transi-
tion. A well-known neighborhood structure for TSP (which is, almost without exception, used in applications
of SA to TSP) is defined by the generation mechanism for transitions and the corresponding transitions are
known as k-opt transitions. The simplest case, a 2-opt transition, is carried out by selecting two cities in the
present tour and reversing the order in which the cities in between this pair of cities are visited (see Figure 2).

Figure 2. 2-opt example (left — current tour, right - tour after reversing the order between cities m and n).

A neighborhood of a tour is now defined as the set of all tours that can be reached from the current tour
via a 2-opt transition (there are Y2(n-1)n such neighbors).

The temperature variation coefficient for cooling schedule, Ty, is 0.925 (Laarhoven et al. 1987). In this
way the running time for each transition is O(n') where p1<I and thus the total running time for the algo-
rithm is O(n’) where 1<p<2.

5 EXPERIMENTS

To implement the SA method and to evaluate its performance, the following case study has been chosen. As-
sume a map of Latvia is given with the regional centers marked. It is required to solve the TSP-25 task with
the help of the SA method, i.e. to determine the shortest tour length between 25 Latvian towns.

The Latvian map shown in Figure 3 is taken from Grolier Multimedia Encyclopedia of 1995 available in
the Internet at (http://www.rec.hu/REC/Maps/lat_map.html).
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Figure 3. Latvian map with the regional centers marked with a cross.
Denotations of the towns and their co-ordinates are specified in Table 1.

Table 1. Denotations and co-ordinates of towns.

No. Region  Town X1 X2

0 A Riga 0,41 0,26
1 B Limbazi 0,49 0,39
2 C Valmiera 0,58 0,40
3 D Cgsis 0,56 0,34
4 E Valka 0,65 0,46
5 F Aluksne 0,79 0,37
6 G Gulbene 0,76 0,32
7 H Balvi 0,82 0,28
8 I Ludza 0,88 0,17
9 J Rézekne 0,83 0,16
10 K Kraslava 0,82 0,03
11 L Daugavpils 0,73 0,02
12 M Preili 0,76 0,11
13 N Jekabpils 0,65 0,16
14 (6] Madona 0,69 0,23
15 P Aizkraukle 0,51 0,19
16 Q Ogre 0,48 0,23
17 R Bauska 0,43 0,14
18 S Jelgava 0,36 0,19
19 T Dobele 0,31 0,18
20 U Tukums 0,29 0,26
21 \% Talsi 0,21 0,33
22 \\% Ventspils 0,10 0,36
23 X Kuldiga 0,14 0,26
24 Y Saldus 0,21 0,19
25 Z Liepaja 0,02 0,16

For the purpose of TSP simulation, a software program was written. The results of its simulation can be
seen in Figure 4.
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Figure 4. Program simulation.
The results of the program execution are presented below.

Travelling Salesman Problem with Simulated Annealing
Initial length: 3.026

Tour= 1 Length= 2.837 2-4-5-6-7-9-8-12-10-11-14-13-15-17-18-19-24-25-23-22-21-20-0-16-1-3-2
Length= 2.757 11-10-12-9-8-7-6-5-4-2-3-1-0-20-21-22-23-25-24-19-18-17-16-15-14-13-11
Length= 2.733 11-12-14-13-15-16-17-18-19-24-25-23-22-21-20-0-1-3-2-4-5-6-7-8-9-10-11
Tour= 4 Length= 2777 21-20-0-1-3-2-4-5-6-7-8-9-10-11-12-14-13-15-16-17-18-19-24-25-22-23-21

1

Tour= 2

3

4
Tour= 5 Length= 2.829 22-21-20-17-15-16-13-14-12-11-10-9-8-7-6-5-4-2-3-1-0-18-19-24-25-23-22

6

7

8

9

Tour=

Tour= Length= 2870 19-18-0-1-3-2-4-5-6-7-8-9-12-10-11-14-13-15-16-17-24-23-25-22-21-20-19
Length= 2.757 22-21-20-0-1-3-2-4-5-6-7-8-9-12-10-11-13-14-15-16-17-18-19-24-25-23-22
Length= 2.733 9-8-7-6-5-4-2-3-1-0-20-21-22-23-25-24-19-18-17-16-15-13-14-12-11-10-9
Tour= Length= 2750 7-6-5-4-2-3-1-0-20-21-22-23-25-24-19-18-17-16-15-13-14-12-11-10-8-9-7

Tour= 10 Length= 2.733 10-11-12-14-13-15-16-17-18-19-24-25-23-22-21-20-0-1-3-2-4-5-6-7-8-9-10

Tour=
Tour=
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Tour= 11 Length= 2.747 10-11-12-14-13-15-16-17-18-19-24-23-25-22-21-20-0-1-3-2-4-5-6-7-8-9-10
Tour= 12 Length= 2733 7-6-5-4-2-3-1-0-20-21-22-23-25-24-19-18-17-16-15-13-14-12-11-10-9-8-7
Tour= 13 Length= 2.733 24-19-18-17-16-15-13-14-12-11-10-9-8-7-6-5-4-2-3-1-0-20-21-22-23-25-24
Tour= 14 Length= 2.733 24-19-18-17-16-15-13-14-12-11-10-9-8-7-6-5-4-2-3-1-0-20-21-22-23-25-24

In accordance with the results of the experiment, the shortest tour between Latvian towns is the following
(see Figure 5).
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Figure 5. The shortest tour according to the experimental results.

6 CONCLUSIONS

This study describes the SA method and presents an example of its implementation as applied to solving the
Travelling Salesman Problem. The SA algorithm is rather slow. This, however, provides finding an opti-
mum. The SA method can further be used to model neural network models, Boltzmann machines.
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the manuscript.
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